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Abstract: Recently, various research studies have been developed to address communication sensors
for Unmanned Aerial Systems (UASs). In particular, when pondering control difficulties, commu-
nication is a crucial component. To this end, strengthening a control algorithm with redundant
linking sensors ensures the overall system works accurately, even if some components fail. This
paper proposes a novel approach to integrate several sensors and actuators for a heavy Unmanned
Aerial Vehicle (UAV). Additionally, a cutting-edge Robust Thrust Vectoring Control (RTVC) technique
is designed to control various communicative modules during a flying mission and converge the
attitude system to stability. The results of the study demonstrate that even though RTVC is not
frequently utilized, it works as well as cascade PID controllers, particularly for multi-rotors with
mounted flaps, and could be perfectly functional in UAVs powered by thermal engines to increase
the autonomy since the propellers cannot be used as controller surfaces.

Keywords: sliding mode; thrust vectoring control; UAV; sommunication

1. Introduction

If you are far away from your enemy, make him believe that you are near. This was
written by Sun Tzu, about 2500 years ago [1]. It seems that this phrase was a precursor to
the subject of unmanned aerial vehicles (UAV), a technical system combining several layers
to make a flying platform, from communication to control and structural systems. UAVs
are almost known as aircraft without a pilot onboard, and they have become increasingly
dominant due to their wide usage as remote-controlled vehicles in different fields, such as
the military, firefighting, logistics, and agriculture. The abbreviation has been changed to
become unmanned aerial system (UAS), to show that such a system does not only depends
upon the aircraft itself, but it depends upon several important issues such as the ground
control station (GCS), Communication systems with complexity, and the computing system.
UAVs have several classifications based on flight endurance, weight, flying application,
altitude, flight range, and the structural type [2], which, amongst the weight and endurance,
are sub-objectives of this research. According to the European Union aviation safety
agency (EASA) regulations for civil UASs open category, four general types are considered
regarding the weight classification: Class A1 (less than 900 g), Class A2 (less than 4 kg),
Class A3 (less than 25 kg), and for weights greater than 25 kg, other categories are observed
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that are based on some operational restrictions. Both piloting requirements and flying
zones are considered [3]. In counterpart, according to the AP-3.3.7 mission qualifications
of the global NATO-STANAG 4670 UAS category, they are divided into nanoscale (less
than 250 g), microscale (less than 2 kg), small scale (less than 25 kg), medium scale (less
than 150 kg), and large scales (more than 150 kg) [2,4]. Among the latter classification,
the heavier the UAV, the more cargo payload benefits from a longer range in a single
load. The medium scales are limited to a lower flight endurance and payload carriage.
Therefore, many recent contexts are concentrated on heavy-lifter UAVs to improve the
control and communication system for such platforms. Likewise, this research investigates
a large-scale UAV of 200 kg weight, which contains several communication and control
layers to maintain the safety of the flight. Meanwhile, the payload system is a releasable
low-density liquid that complicates the system’s dynamic.

Heavy UAVs consist of many components, in which the most crucial ones function as
a communication system that is not only in charge of internal commands transmission but
also external UAVs, which can be seen as ad hoc nodes, concatenating in a subcategory of the
ad hoc network called the flying ad hoc network (FANET) [4]. Several novel technologies
are proposed: infrastructure-based network (IBN), wireless sensor network (WSN), wireless
mesh network (WMN), and flying ad hoc network (FANET) [5,6]. Of these, cellular assistant
UAV communication is a novel technology handled by multi-aerial nodes [2,7,8]. The
objective of this technology is to utilize the maximum 5G and beyond network quality
supported by air-to-air and ground-to-air access points to maintain robustness in the
presence of disturbance. Behjati et al. [9] represented several machine learning-based visual
line of sight (VLoS) models to estimate the reference signal power and quality according
to various mathematical methods. They found that the quality depends heavily upon
the distance of the UAV and the GCS, and the flight altitude which leads to the elevation
angle. The nonlinear models conquer the linear ones due to their highly accurate prediction.
Meanwhile, the authors of [10] proposed a novel MANET protocol called UAV-to-UAV (U2U)
plus UAV-to-Infrastructure (U2I) communication and outlined its benefits equipped with WSN
and a linear sensor network (LSN) as data collectors, regarding the latency. They implemented
a dynamic system to change the communication layers via relays, considering various ratios
based on the strength of every node to be exchanged; then compared the average delay, service
time, and delivery ratios of several topologies. They claimed the LSNs link to each other with
minimum delay when the packets are transmitted in a queue, ordered by a lesser generation
time; however, their work did not include any piratical scenarios.

In this research, a newly released U2I communication system is integrated into a WSN
topology and is easily installed but responds with significantly less latency, even when trans-
mitting high-quality videos to the ground control station (GCS). In this submission, the UAV’s
weight and payload type saliently impact the communications utilized, so that in a mini UAV,
the communication links are significantly limited, while the danger is also negligible. In contrast,
in a large case, communication is critical and if the payload material is a liquid, even more
special sensors, such as thermal and chemical pressure sensors, will be needed.

On the other hand, the control system provides several challenges related to stabilizing
heavy UAVs, especially when conventional solutions are not effective. Nowadays, electrical
UAVs mostly work accurately and have been improved a dozen times; however, they suffer
from low flight endurance, and if electrical motors are substituted by thermal engines, the
controller surfaces would be changed due to the limits of thermal systems. The authors
have previously discussed the limitations and solutions proposed in [11,12]. In this paper, a
novel approach is put forth that, despite its rarity in the history of aeronautics, if constructed
properly, may stabilize an unmanned aerial vehicle (UAV) for a long period, even in the
presence of wind disturbances. More literature reviews could be found in authors’ previous
works [11–16]. Briefly, the control strategy presented in this paper—thrust vectoring using
flap vanes—offers various advantages over other strategies, including simplicity of servo
installation and reduction in the mechanical complexities compared to those of collective
pitch propellers because they have fewer movable components; more dynamic stability in
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attitude control, rather than rotatable hinges or ducts; more efficiency in lift generation based
on flap design, as opposed to collective pitch props, which also offer faster response times,
and when adjusting the flow direction and magnitude, allows for rapid changes in thrust
vectoring, which can be advantageous for applications requiring agile flight control [17];
and finally, properly designed flap vanes can contribute to noise reduction. By controlling
the flow patterns and reducing turbulence, flap vanes can help mitigate noise emissions,
making them suitable for applications where noise reduction is a critical factor [18].

This paper is organized into five sections, as follows; Section Two discusses UAV
communication subsystems; Section Three denotes the dynamic model and control; Section
Four compares results, and finally, Section Five concludes the paper.

2. UAV Communication Subsystems

In particular, this paper represents a complete UAV system consisting of various
components controlled by the autopilot (AP). The majority of connections are direct and
in minor sub-components such as the cameras and lasers, an onboard computer processes
the image data and collaborates with the AP in a lower level, as shown in Figure 1. This
is elaborated further in Figure 2. Meanwhile, the positioning data are enhanced by the
global navigation satellite system (GNSS). Moreover, the power management Unit (PMU)
supplies the energy for all subsystems, which not only regulates the thermal energy to two
main outputs of 12 V and 24 V but also feeds the power system. This includes the engine
control unit (ECU), three internal combustion motors, and an engine monitor to demon-
strate and regulate the power system in case of danger, as shown in Figure 1. Furthermore,
the UAV is empowered with a redundant radio system. Principally, the command and
control radio leads all the communication levels regarding internal subsystems and out-
performs the U2I communication, which is further described in Figure 3. Meanwhile,
in case of no functionality, the backup radio compensates the essential subsystems to
follow up the last waypoints stored in the buffer to return to land in safe mode. The
UAV benefits from various advantages of such redundancy, including more reliability and
fault tolerance when the principal radio fails, and the second one transmits only critical
telemetry to the GCS and vice versa. Additionally, when the primary communication
channel experiences problems, the redundant system helps isolate and identify the source
of the issue, which facilitates timely maintenance and repairs, reducing downtime and
improving overall system availability. In particular, the safety package consists of a flight
termination system (FTS) used to manage the whole UAV system in an emergency case,
which is simplified to an electrical board that receives and stores the last flight mode and
important logs with high frequency. The designed UAV in this paper has a redundant
power system, comprising thermal and electrical thrusters. Electric ducted fans (EDFs) that
are much smaller only maintain stability during an emergency landing and are inactive
when conditions are normal so as not to impact the inlet air stream during the flight, as
shown in Figure 3. In emergency circumstances, the FTS automatically activates between
six to eleven seconds (to be chosen by the GCS pilots) after the PMU output power faces a
sudden decrement and transfers the supply power to batteries located next to the thermal
engines, which are adequate for an agile landing. Further, the system is detailed in several
subsections, the AP and digital system, the power system, the safety system, and the
communication package.
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Figure 1. The overall schematic of the UAV system.

2.1. Autopilot (AP) and Digital Systems

The AP configuration system is made up of several layers that receive the actual
state traumas of each component equipped with a real-time operating system (RTOS),
which analyzes the data in hierarchical series and prohibits the non-critical processes from
interfering with the principal functions and performing adequate safety. Moreover, the
powerful NXP-based microcontroller board is equipped with a double CPU configuration
to parallelize the data logging and calculation process. Meanwhile, the high-level reference
data are outputted by the guidance loop that includes a flight navigation system corrected
by several references, then, the low-level orientations and estimations are provided by the
attitude and heading reference system (AHRS). This imports the position desired values
and desired attitude angles and generates the necessary moments for the dynamics system
of the UAV, which are later saturated for the actuators. Meanwhile, the controller SW loops
are divided into two modes. The guidance corrections are constantly impacting the input
reference values in a closed-loop system to regulate the desired outputs. In addition, the
digital system contains a Jetson Xavier (https://developer.nvidia.com/embedded/learn/
get-started-jetson-xavier-nx-devkit, accessed on 5 February 2023) onboard flight computer
to control and analyze the camera output and stream the video in the multi-cast mode
for ground observers. Meanwhile, the flight computer is connected directly to the AP,
and some of the less important commands, such as navigation enhancement achieved by
processing an Extended Kalman Filter (EKF) algorithm, utilizing an additional IMU to
compare the data with the AP IMU and recording auxiliary telemetry.

https://developer.nvidia.com/embedded/learn/get-started-jetson-xavier-nx-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-xavier-nx-devkit
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2.2. Communication System

As mentioned in the introduction, the UAV is empowered by a duplicate communica-
tion system in which the principal command and control radio leads the critical commands
between the autopilot and other subsystems. Explicitly, two types of communication are
considered: an internal communication system and external communication with the GCS
(U2I). The internal commands are transmitted by a standard RS-485 serial interface facili-
tated through an internal switch to receive/send the data with the least latency (less than
5 ms) and to secure the communication system. All the auxiliary connections—namely,
video streaming, the onboard computer commands, and the lights—are transmitted through
a separate line. Regarding the U2I communication, two antennas are installed on the UAS,
as shown in Figure 3, once an omnidirectional antenna plate is utilized for distances lesser
than 10 km, which is highly powerful for flights bounded in small areas, but lacks the
performance to handle all the data for longer distances. Then, a yagi antenna is installed
for distances longer than 10 km. 
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Figure 3. The UAS infrastructure and the communication system.
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3. Dynamic System and Control

In order to ensure successful missions for heavy UAVs, the performance of various
components and dynamic systems necessitates optimization of the overall reaction to com-
mands, in which minimizing error time is one of the most crucial optimization criteria,
i.e., reaching zero error in the higher controller loop and all of its derivatives as quickly
as possible. Among the various possibilities, the vertical thermal thrusters regulate the
altitude with the least error, benefiting a long flight; however, regarding the horizontal
flight, the system suffers in terms of efficiency due to the latent response of motors when the
speed controller unit (ECU) commands distinct spin rates in small time intervals. Therefore,
one of the most efficient solutions presented is thrust vectoring control (TVC) [19], which
aims for both the optimal time and the least error. Typically, TVC consists of sensors and
actuators. The sensors provide information on the UAV’s attitude and motion, while the
actuators adjust the flaps’ deflection angle in response to the control signals generated by
the autopilot. In particular, in the case of a multi-rotor, the system could be thought of as a
multi-ducted-fan (MDF), in which each duct contains a set of lateral and longitudinal flaps
corresponding to a servo (the number of flap vanes could vary depending on the design,
but the less servos control employed, the less functional issues and AP limitations). In this
section, two studies are conducted, focusing on aerodynamic analysis and dynamic stability.

3.1. Aerodynamics Analysis

Optimizing the structure according to aerodynamics principles, TVC performance
mostly depends on duct design and outlet duct section; the larger diameter of the outlet
section, the greater the lift production and the lower the energy consumption [19], as shown
in the form of continuity in Equation (1).

ρArvr = ρAeve → ve =
Arvr
Ae

Sr,e =
1
4 π(D2

r,e − D2
s )→ βd = Se

Sr

(1)

where, {}r,e refers to the rotor and exhaust prefixes, respectively, A is the section area,
S is the air inlet area, which is extracted from the central spinner area, D is the section
diameter, v is the airflow velocity, and βd is duct sectional efficiency. This is experimented
with by expanding the exhaust duct area up to 1.7 times. The efficiency is advanced up to
1.3 times [19]. This phenomenon is also observable with flap presence, while the thruster
flap vanes intrigue a product drag force that decreases the total thrust.

In addition, the blade profile leads the inlet air impacts directly on the thrust and the
power consumption [20]. As shown in Figure 4, during an aerodynamic analysis with a
spinning velocity up to 5000 RPM, it was proven that the higher the pitch angle at the
blade tip, the more thrust is produced and more power is consumed, referring to the table
in Figure 4. Likewise, the pressure drop cowling is doubled when a tip angle is implied.
Additionally, the propeller after pressure (prop. aft. pressure) is merely higher with the tip
angle, which demonstrates an overall better performance with the tip angle.

Furthermore, to have a better thrust, the number of blades has an outstanding effect.
To investigate the importance of this and find a suitable blade number, four different types
are studied, with 5, 8, 16, and 32 blades, as shown in Figures 5 and 6. during the test, the
spinning velocity grew up to 6500 RPM, in which, variables of thrust cowling, pressure
consumption, pressure drop cowling, outlet pressure, duct outlet pressure, and the prop.
aft. pressure were observed. As shown in the four plots in Figure 5, the more blades
installed, the more thrust and power consumption are obtained, while the duct outlet
pressure is approximately equal for the propeller with 8 and 32 blades, the two others are
lesser which means also a lesser efficiency. This also could be observed in the prop. aft.
pressure, which is way higher in the propeller with 8 blades. Additionally, as is shown
in the middle table in Figure 5, the thrust cowling arises as the blade number increases,
but also accompanies an increment in the power consumption. Therefore, comparing all
increments of thrust, power consumption, and pressure drop, in which the first one is
desirable and two letters are unwanted, a configuration with eight blades has the best
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performance that also benefits from the continuous stream at the duct exit, as shown in
Figure 5. To understand the numerical data shown in Figures 4 and 5, they are clarified in
distinct plots shown in Figure 6.

𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑇𝑖𝑝 𝐴𝑛𝑔𝑙𝑒 𝑊𝑖𝑡ℎ 𝑇𝑖𝑝 𝐴𝑛𝑔𝑙𝑒 
𝑇ℎ𝑟𝑢𝑠𝑡 𝐶𝑜𝑤𝑙𝑖𝑛𝑔 (𝑁) −542 −932.767
𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝐹𝑎𝑛 (𝑊) 30074 62603 
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑟𝑜𝑝 𝐶𝑜𝑤𝑙𝑖𝑛𝑔 (𝑃𝑎) 78 195 
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Figure 5. Effects of the blade numbers on the thrust generation and power consumption.
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As shown in Figure 6, to observe the best performance among four different types
of propellers, four main elements are considered: power, pressure drop, thrust, and the
power-to-weight ratio. The power required by the propellers is directly proportional to
their thrust, so more power results in higher performance. Conversely, decreasing power
reduces the propeller’s thrust output. Likewise, increasing thrust is desirable as it enables
the multi-ducted fan to lift heavier loads. Then, the power-to-weight ratio represents the
amount of power generated by the propeller relative to its weight, in which a higher one
indicates greater efficiency and performance. Finally, pressure drop refers to the decrease
in air pressure across the propeller as it generates thrust, and a moderate pressure drop is
desirable for efficient operation, while an excessive one can indicate an inefficient design.
In summary, the only plot that demonstrates a lesser decrement in the pressure drop,
although the higher increment in the thrust is the one belonging to the propeller with eight
blades. Additionally, in cases of generated thrust, 8 blades and 32 blades functioned better,
suggesting that the eight-blade model is best.
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Figure 6. Comparison of the impact of blade number on the power, pressure drop, thrust, and
power-to-weight ratio.

According to several experiments [21–23], to achieve more benefits of flap vanes
and less production drag, the CoM of the UAV is considered above the rotor section,
i.e., the more distance between flap vanes, the more lift forces generated. Therefore, the
aerodynamic forces generated by the vanes are described as follows,

Li f t f =
1
2 ρv2Cl A f

Drag f =
1
2 ρv2Cd A f

(2)

where Cl and Cd are the lift and drag coefficients of the flap vane, and A f is the effective
area toward the aerodynamic forces.

Furthermore, several clues are considered for the flap vanes, since all the vanes are
installed at the duct outlet, as shown in Figure 7. Importantly, the longer duct, the higher
velocity at the exit; however, it changes the CoM downward, which leads to a reduction
in the dynamic stability of the whole system. Therefore, weighting these two factors, a
medium height is chosen for the ducts based on experimental analysis. Generally, there
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are no universal geometry rules for the height of the flap vanes compared to the duct
height. This depends on several elements, including the desired thrust vectoring capability,
control authority, and aerodynamic performance. Therefore, the height of the flaps or
vanes could be determined through aerodynamic analysis, computational fluid dynamics
(CFD) simulations, or empirical testing [24]. The objective is to achieve the desired flow
control and vectoring characteristics while minimizing flow separation, drag, vane-to-duct
proximity, and noise production. In this paper, the height of the flaps is considered as
70% of the ducts to maintain the effectively interact with the flow passing through the
duct, improving the lift force generation and controlling the overpassing of the drag forces.
Meanwhile, the geometry of the flaps is considered NACA-0015 and their deflection angle
is limited to 15◦, referring to a previous experiment [12].

Free Air Stream at the duct inlet

Flap vanes at the duct outlet

Limited

rotation

Servo

mechanism

Lift

Drag
Deflection

angle (𝛿)

Figure 7. A simple schematic of the duct and the flap vanes installed at the exhaust.

3.2. Control Strategy

A brief equation set of a robust sliding mode TVC is presented in this section for
UAV multirotor systems. Generally, hexagonal cases are equipped with more motors
and propellers that provide more redundancy and improve control in the case of a motor
failure. Thus, hexacopters are thus a well-liked option for heavy-lift applications [25–27].
As mentioned in the introduction, the solution provided in this paper involves installing
flap vanes at the engine exhaust, which leads to employing a ducted-fan application.
Considering mentioned clues, and the position reference objective for the system, the
system’s primary state matrix contains x, y, z, φ, θ, ψ, and their derivatives. Addressing the
servos connected to the flap vanes, the whole attitude controller is upon their movements,
so if every duct has four flaps at the exit, then four deflection angles per duct will be
added to the system’s states, which complicates the process. Simplifying the problem,
all the desired movements and turns could be summarized into the combination of all
ducts, therefore, two flap vanes per duct will be sufficient for easiness in both mechanical
and computational processes, which concludes 2 extra angles per duct and overall yields
12 deflection angles as additional states, δ11, δ12, δ21, δ22, δ31, δ32, δ41, δ42, δ51, δ61, δ61, δ62 that
in δij, i represents the duct number and j ∈ 1, 2 demonstrates the latitudinal or longitudinal
mode of the vanes, respectively. Thus, knowing the actual and desired states of the drone,
two principal modes are considered: a vertical and attitude controller, which leads to the
planar controller. Among several sliding modes (SMs) design approaches, including pole
placement, Lyapunov-based, optimal control-based, and model predictive methods, we
chose a Lyapunov candidate that converges to zero and in a finite time and maintains



Sensors 2023, 23, 5561 10 of 14

there. To this end, a suitable sliding surface is defined, containing all attitude variables,
which yields;

S =
sin(ψd − ψ)cos(θd − θ)cos(φd − φ)− cos(ψd − ψ)sin(θd − θ)

cos(δ f ,d − δ f )
(3)

where, φ, θ, ψ are roll, pitch, and yaw angles, respectively, δ f is the flap vane’s deflection
angle, and the {}d is the desired value. Conditioning the Lyapunov candidate to be positive–
definite, radially bounded, and decreasing along the sliding surface, the function and its
derivative of V(s) with respect to time are as follows,

V(s) = 1
2 S2PS

→ dV(s)/dt = 1
2 P(2SdS/dtS + S2dS/dt)

(4)

where P is a positive–definite matrix, and dV(s)/dt must be always negative to ensure that
during the sliding mode, the system is always in a neighborhood of the sliding surface and
will converge to the desired state despite any disturbances or uncertainties in the system.
SMC law is defined as dS/dt = u = −k1Sign(S) + k2 tanh(k3S), in which ki, i ∈ 1, 2, 3 are
constants that determine the rate of convergence to the sliding surface and are obtained
through the controller design process. Thus, based on the sliding surface (S),

dV(s)/dt = 1
2 P(2S(−k1Sign(S) + k2 tanh(k3S))S + S2(−k1Sign(S) + k2 tanh(k3S)))
→ dV(s)/dt = PS2(k2 tanh(k3S)− k1|S|)

(5)

Where dV(s)/dt will be negative whenever k2 tanh(k3S) < k1|S|, since tanh(k3S) is
bounded in (−1, 1), and P and the constants k1, k2, k3 are all positive. This means that
dV(s)/dt is negative for all non-zero values of S when k1 > k2 and k3 < 1. Therefore, it is
proven that dV(s)/dt is always negative and the system converges to a stable equilibrium
point, and the control law given by u = −k1Sign(S)− k2 tanh(k3S) guarantees the stability
of the closed-loop system. Finally, substituting the earlier expression of S,

dV(s)/dt = [(S(eψ)C(eθ)C(eφ)− C(eψ)S(eθ))/C(eδ f )]
2∗

P[C(δ f ,d)C(φd)C(δ f )C(φ)+S(δ f ,d)S(φd)S(δ f )S(φ)+C(δ f ,d)S(θd)C(δ f )S(θ)+S(δ f ,d)C(θd)S(δ f )C(θ)]
S(eψ)C(eθ)C(eφ)C(δ f ,d)C(δ f )C(φ)+S(δ f ,d)S(φd)S(δ f )S(φ)+C(δ f ,d)S(θd)C(δ f )S(θ)

(6)

where S() ∼= sin(), C() ∼= cos(), and e refer to the difference between the desired and actual
value. Hence, considering the control law, the attitude controller with respect to the flaps
vanes’ deflection angle could be rewritten as

Uroll = Ix(δ̈ f ,d − k1 ėφ)− k1 tanh(k3S)
Upitch = Iy(δ̈ f ,d − k2 ėθ)− k1 tanh(k3S)
Uyaw = Iz(δ̈ f ,d − k3 ėψ)− k2 tanh(k1S)

(7)

where the constants ki, i ∈ 1, 2, 3 will be obtained via trial and error during the implementa-
tion, and I demonstrates the inertial moment. The Equation (7) states the attitude controller
that leads to the position controller.

4. Results

Affirming the TVC algorithm proposed through the control design section, a complete
platform is modeled in SolidWorks (https://www.solidworks.com/, accessed on 21 January
2023) and exported to the Gazebo (https://gazebosim.org/, accessed on 5 February 2023)
dynamic environment to observe the results, in which several platforms and trajectories
were tested to optimize and tune the controller gains. Meanwhile, since the control objective
in this research is to stabilize a smooth movement without harsh maneuvers, the best
trajectories were ones with a few sharp turns. However, these trajectories are still too
long to observe the thermal engines’ performance. Hereupon, two routes are suggested
in a 300× 300 m2 area, once a circular route and then a rectangular one to be compared

https://www.solidworks.com/
https://gazebosim.org/
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thereafter, where both plans are smoothed in corners. Meanwhile, in the first two plots, a
realistic simulation is performed to observe the performance of the controller in the long
run. The wind noise equation applied to the system is assumed to be a zero mean with
a normal distribution (Gaussian), and a differential variance to be integrated with the
controller input matrix, as shown in Equation (8),

Ut = Uc + Nt
Nt =

∫ π
−π v(cos(θ) + sin(θ)) dθ

(8)

where the total controller input matrix (Ut) can be determined by the primary controller
input (Uc) and the noise function (Nt) based on the constant velocity and the pitch angle of
the drone.

In Figure 8, a semicircular route is projected in the horizontal plane, where the desired
values are highlighted with the red line, and the actual UAV movements are in blue. The
flight plan constantly maintains a 5 m altitude, so the vertical Z axis is not considered.
Starting from the waypoint (0, 0), the heavy UAV moves with a constant velocity of 5 m/s.
It moves smoothly along the reference trajectory, containing a random noise applied to the
controller to examine the performance in the long run as a steady state mode.

–400 –300 –200 –100 0 100 200 300 400
–50

0

50

100

150

200

250

300

350

Figure 8. (Realistic Simulation). The horizontal projection of the reference and actual trajectory in the
presence of a random wind disturbance and a semi-circular area.

Likewise, as shown in Figure 9, a rectangular trajectory with more direct and longer
routes was planned in the presence of a random wind disturbance, and the controller
performed better because of lesser radial lines through the trajectory. In both cases, the
steady-state error was less than 4%, which proves the efficiency of the SMC presented.

Comparing these results to ones obtained by a well-tuned cascade PID controller and
in a fully electrical hexacopter that uses propellers as the controller surfaces for attitude, the
results are shown in Figures 10 and 11, in which the overall steady-state error is less than
2%. However, in sharp points and during turns, the SMC functioned better. To be precise,
the main difference between the two controllers is the use of flap vanes as the controller
surfaces, as shown in Figures 8 and 9, which facilitates employing the thermal engines to
have a way longer flight autonomy. However, this caused various uncertainties simulated
by random noises, as observed in the figures.
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Figure 9. (Realistic Simulation). The horizontal projection of the reference and actual trajectory in the
presence of a random wind disturbance and a rectangular area.
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Figure 10. (Ideal Simulation). The horizontal projection of the reference and actual trajectory, in a
semi-circular area, which is controlled by a cascade PID controller.
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Figure 11. (Ideal Simulation). The horizontal projection of the reference and actual trajectory, in a
rectangular area, which is controlled by a cascade PID controller.
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5. Conclusions and Future Work

This research addresses theoretical and practical controller platforms, offering novel
solutions to the vital control issues that arise when combined with communication problems
in the case of multi-UAVs for remote sensing operations. In particular, a multi-ducted
fan (MDF) is designed based on several considerations, including long flight endurance
and transporting heavy payloads, and to maintain more stability, a hexa-duct casing is
developed. Then, utilizing the aerodynamics results, a suitable duct geometry concentrating
on the exhaust area is exploited to optimize the number of blades in each propeller, which
leads to better performance. The presented system is powered by thermal and redundant
electrical engines, in which the thermal ones generate the required thrust during the flight,
and the electrical ducted fans (EDFs) survive the MDF in case of emergency. Furthermore,
in order to overcome the uncertainties of the thermal thrusters, a novel robust controller
based on thrust vectoring control (TVC) is presented. The results demonstrate an acceptable
performance for long-range flights when compared to a tuned cascade PID performance
for an ideal case, but improving the TVC’s theory and practical application is required
for the design of industrial platforms. Meanwhile, a redundant communication system is
carried out to support flights with medium and long ranges. Future works will include the
analysis of the sensors and the useful outcomes of the enhanced system.
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